Informatique et Calcul Scientifique

Les listes en Python

19.03.2025

Luc Testa ICS - Cours 4 19.03.2025 1/44

La fois passée, on a vu...

> Les fonctions en Python

def ma_fonction(paraml, param2, param3 = 1, param4 = 2):
"""documentation de ma fonction"""
Ensemble d’instructions composant le corps
de ma fonction et effectuant des operations
sur des variables xlocales*
return paraml+param2, param3+param4

= 50
b = ma_fonction(x,param2 = 10)
int(a,b) # retourne 60, 3

» La notion d’'espace de travail et de portée des variables
(locales et globales)

» Les modules en Python.

Luc Testa ICS - Cours 4 19.03.2025 2 /44

But de la lecon

Aujourd’hui on...

» introduira un nouvel objet en Python : la liste
» on étudiera des opérations associées
» parlera de copies superficielles

» verra la notion de mutabilité

Luc Testa ICS - Cours 4 19.03.2025 3 /44

Structures de données

Un programme informatique (en Python ou autre) manipule des
données.

» Quelle est la structure de données la plus optimale! pour les
opérations que nous aimerions effectuer ?

» Dans ce cours, on étudiera une des principales structures de
données en Python : les listes.

1. ..par rapport a quoi ? Comment quantifier I'efficacité ?
Luc Testa ICS - Cours 4 19.03.2025 4 /44

Listes en Python

Une liste Python est une structure de données qui permet de
regrouper diverses données de maniere ordonnée.

> L - [,ay’ ’b,, ’C,, ,d7, ,ey]

(cJ (d)

I’aJ | ‘b’

‘e’ |

» L = [21, 33, "abc", [1, 2, 311

| 21 | 33 | abc’ | [1, 2, 3] |

La représentation des listes ci-dessus est schématique et ne reflete
pas ce qui se passe vraiment en mémoire - plus d'infos plus tard.

Luc Testa ICS - Cours 4 19.03.2025 5 /44

Opérations sur les listes

On peut :
P Créer une liste, vide ou contenant déja des éléments
» Effectuer des opérations de lecture :
P> Accéder a un élément d'une liste
» Copier une liste

» Effectuer des calculs sur une liste : trouver le min, le max, la

longueur, ...
»

> Effectuer des opérations d'écriture :
» Modifier un élément d'une liste
Ajouter ou enlever un élément de la fin d'une liste

»
» Insérer ou enlever un élément a un index quelconque de la liste
P> Etendre une liste avec les éléments d'une autre liste

»

. Pour une liste compléte des opérations possibles sur une liste en Python,
voir la documentation Python.
Luc Testa ICS - Cours 4 19.03.2025 6 /44

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

Créer une liste

On déclare une liste par des valeurs séparées par des virgules et le
tout encadré par des crochets droits.

» L'instruction L = [0, 2, 4, 6] crée une liste contenant les
éléments 0, 2, 4 et 6 et I'affecte a la variable L .

» On peut créer une liste vide : L = []

> Les éléments d'une liste n'ont pas besoin d’étre du méme
type... mais c'est souvent le cas en pratique.

L1 = [1, 2, 3] Output :

print(f"{L1 = }") L1 = [1, 2, 3]

L2 = [’a’, 'b’, ’c’] o
print(f"{L2 = }") 2= ey, st

L3 = [1, ’a’, 2, ’b’, 3, ’c’] L3 =10, ’a’, 2, 'b’, 3,
print(f"{L3 = }") el

L4 = [[1, 2, 31, [’a’, 'b’, ’c’1] L4 = [[1, 2, 3], [’a’,
print(f"{L4 = }") b, ’c’1]

Luc Testa ICS - Cours 4 19.03.2025 7/ 44

Accéder a un élément d'une liste

Comme les chaines de caracteres, les listes sont des séquences
dont les éléments sont indexés. Ainsi, il s'agit d'objets itérables.

» Les éléments d'une liste de longueur n sont indexés par

0, 1, ..., n-1.La valeur de I'élément i est donné par
LLid.
L=2r[’a’, 'b’, ’c’, ’d’] Output
print(f"{L[0] = }") L[e] = ’a’
print(f"{LL1] = }") L[1] = ’b’
print(f"{L[2] = }") L[2] = ’¢’
print(f"{L[3] = }") LC3] = ’d’
‘a’ ‘b’ ‘zzy’ | ‘zzz’
) 1 n-2 n-1

Luc Testa ICS - Cours 4 19.03.2025 8 /44

Accéder a un élément d'une liste

» On peut utiliser les indices négatifs -1, -2, ..., -n pour
accéder aux éléments de la liste a partir de la fin :

‘a’ ‘b’ “ee fzzy’ | ‘zzz2’
e 1 n-2 n-1
-n -n-1 -2 -1

» Si on essaie d'accéder a un index i trop grand ou trop petit,
une exception IndexError est générée :

Output :
L =1[’a’,3,[1,2]1] L[-2] = 3
print(f"L[-2] = {L[-2]1}") IndexError: list index
print(f"L[-5] = {L[-51}") out of range
print (f"L[3] = {L[313}") IndexError: list index

out of range

Luc Testa ICS - Cours 4 19.03.2025 9 /44

Accéder a une tranche de liste

Comme pour les chaines de caractéres, on peut accéder a une
sous-liste de la liste.

» Pour une liste L, L[i:j] est une liste qui contient les

éléments de la liste L entre les indices i (inclus) et j
(exclus).

» Si i est omis, il est pris a 0 par défaut. Si j est omis, il est
pris a len(L) par défaut.

» L[:] est donc une copie superficielle? de la liste L .

L = [10, 30, 50, 70, 90] D -
print(L[2:4]1)

print(L[2:51) [50, 70]

L1 = L[:] [50, 70, 90]
print(L1) [10, 30, 50, 70, 90]
print(L1 is L) False

2. Nous reviendrons sur ce point trés important dans la suite de ce cours
Luc Testa ICS - Cours 4 19.03.2025 10 / 44

Accéder a une tranche de liste

> De méme que pour les str, on peut définir un pas pour le

slicing
L[i:j:k] est une liste contenant les éléments de L d’indices
i, i+k, i+ 2k, ... jusqu'a j exclus.

» Attention, comme pour la fonction range() , le pas peut étre

négatif !
P Le pas est pris a 1 par défaut.
L = [10, 20, 30, 40, 50, 60, 70] Output :
print(L[2:6:2]) [30, 50]
print (L[6:1:-2]) [70, 50, 30]
print(L[2::1) [30, 40, 50, 60, 70]
print(L[:2:1) [10, 20]
print(L[::-21) [70, 50, 30, 10]

Luc Testa ICS - Cours 4 19.03.2025 11 / 44

Parcourir une liste

S'agissant d’'un itérable, on peut parcourir les éléments d'une liste
de la méme maniere qu’'on ferait pour un range ou un str.

» On utilise une boucle for et le mot-clé in.

> La variable val ci-dessous prend les valeurs successives de la
liste a chaque itération.

Output :
L =101, 3, 5, 7] 1
for val in L: 3
print(val) 5
7
Luc Testa ICS - Cours 4

19.03.2025 12 / 44

Créer une liste a partir d'un itérable

On peut convertir n’'importe quel objet itérable en une liste.

L1 = list(range(2, 9, 3))

print(L1) Output

s = "salut” [2, 5, 8]

L2 = 1iSt(S) °s?, P@°, °LP, °Pw?, °&°]

print(L2) TypeError: ’int’ object is not
iterable

n =3

L3 = list(n)

Luc Testa ICS - Cours 4 19.03.2025 13 / 44

Modifier un élément d'une liste

On peut modifier I'élément i d'une liste L avec l'instruction
L[i] = nouvelle_valeur .

» SiI'élément a remplacer est une tranche de liste, donc un
objet itérable méme s'il ne contient qu'un seul élément, il
doit étre remplacé par un autre autre objet itérable (liste ou
string).

P Les deux itérables n'ont pas besoin d'étre de méme taille!

ma_liste = [1 ,3 ,5 ,7 ,9 ,11]

. Output :
ma_liste[2] = ’A’
print(ma_liste) 0, 3, ’'A, 7,9, 1]
ma_liste[3:6] = ’'B’ [1, 3, ’A”, ’B’]
print(ma_liste) [1, ’c’, 'd’, ’e’, ’A’, 'B’]

ma_liste[1:2] = [’c’,’d’,’e’] .
print(ma_liste) TypeError: must assign
- listeE3-4] Z iterable to extended slice

Luc Testa ICS - Cours 4 19.03.2025 14 / 44

Un exemple : liste de listes

Les éléments d'une liste peuvent étre de n'importe quel type; en
particulier, ils peuvent étre a leur tour des listes.

L = [[1e, 20, 301, [1, 3, 511 Output :

print(L[0])

print(L[11) Lo, 20, 301

for i in L[0Q]: [1, 3, 5]
print(i, end = " ") 10 20 30

print ()

print(L[1][@], LL11C1], LL11C21) 13

Luc Testa ICS - Cours 4 19.03.2025 15 / 44

Un exemple : liste de listes

Une liste de listes est utile pour représenter une matrice m X n.

» On utilise une liste contenant m listes, chacune contenant n
éléments.

> La matrice ci-dessous peut étre représentée par
M= [[1, 21, [3, 4], [5, 6]1]

0o 1
o| 1 2
113 4

2|5 6
> M[il[j] est I'élément de la ligne i et de la colonne j :

M= [[1, 2], [3, 41, [5, 61] Output :
print (f"{M[21[1]=3}, {M[11[el=3}") M[2][1]=6, M[1][0]=3

Remarque : on peut aussi créer des "vecteurs de matrices” | Cet objet
mathématique s'appelle un tenseur. On crée pour cela une liste, dans une
liste, dans une liste...

Luc Testa ICS - Cours 4 19.03.2025 16 / 44

Insérer un élément a la fin d'une liste

La méthode3 append() permet de rajouter un élément 2 la fin
d'une liste.

» S'agissant d'une méthode, son appel est différent des
fonctions habituelles.
Pour appliquer la méthode append sur I'objet maliste, on
utilise la syntaxe : maliste.append(valeur)

L- e, 11 Output :

print(L, "est de longueur”, len(L)) [0, 1] est de longueur 2
L.append(10) [0, 1, 10] est de
print(L, "est de longueur”, len(L)) longueur 3

L.append(13)

. [0, 1, 10, 13] est de
print(L, "est de longueur”, len(L))

longueur 4

» Elle modifie donc la liste (important!).

3. Une méthode est une fonction définie pour une classe particuliere d'objets
Luc Testa ICS - Cours 4 19.03.2025 17 / 44

Exemple : Construction de matrices

On peut utiliser la méthode append() pour remplir une matrice de
dimension m X n.

m,n = 3,4
M =[]
co =1
for i in range(m): # row output :
line = []
for j in range(n): # column o, 2, 3, 41, 5, 6, 7, 8]
line.append(co) » [9, 10, 11, 12]]
co += 1
M.append(line)
print (M)

» On remplit les n colonnes d'une ligne qu'on stocke dans une liste
(boucle j)

» On ajoute chaque liste dans un élément d'une autre liste M
représentant la matrice (boucle 1)

Luc Testa ICS - Cours 4 19.03.2025 18 / 44

Insérer un élément en milieu de liste

La méthode insert(i, x) appliquée sur la liste L permet d'y
insérer I'élément x juste avant l'indice i : L.insert(i,x)
> Tous les éléments aprés i sont décalés “vers la droite”.
L'élément qui était a I'indice i est maintenant a 'indice i+1 .
> Elle modifie donc la liste L .

L =101, 3, 5, 7]
L.insert(2, ’a’) Output :

print (L) [1, 3, ’a’, 5, 7]
L.insert(-2,’b’) [1, 3, ’a’, ’b’, 5, 7]
print(L)

A explorer :
» Que se passe-t-il si on appelle insert() avec un index trop
grand 7 ou avec un index trop négatif ?

> Que se passe-t-il conceptuellement lorsqu’on insére un
élément en téte de liste 7 ou en fin de liste?

Luc Testa ICS - Cours 4

19.03.2025 19 / 44

Enlever un élément de la fin d'une liste

La méthode pop() permet d'enlever un élément de la fin d'une

liste :
L =103, 6, 9] Output :
L.pop ()
print (L) (3, 6]

> x = pop() modifie la liste L et de plus retourne I'élément
enlevé de la liste, qu'on peut sauvegarder dans la variable x :

L =13, 6, 9] Output :
x = L.pop()

print(f”on a pop 1l’element {x3}")
print(f"{L = }")

print(f"{x = }")

on a pop l’element 9
L = [3, 6]
X 9

P> Testez : que se passe-t-il si on essaie d'appliquer pop() a une
liste vide ?

Luc Testa ICS - Cours 4 19.03.2025 20 / 44

Enlever un élément du milieu d'une liste

La méthode pop() peut aussi prendre un indice comme argument
optionnel.

» Dans ce cas L.pop(i) enléeve I'élément a l'indice i de la
liste, et décale tous les éléments qui suivent “vers la gauche” :

L =101, 3,5,7, 9] Output :

x = L.pop(2) ,
print(f"on a pop l’element {x3}") on a pop 1’element 5
print (L) (1, 3, 7, 8]

> Testez : que se passe-t-il si on appelle L.pop(i) avec i trop
grand ou trop négatif?

Luc Testa ICS - Cours 4 19.03.2025 21 /44

Enlever un élément du milieu d'une liste

On peut enlever un élément de la liste selon sa valeur au lieu de
son indice.

» La méthode L.remove(x) enléve le premier élément de
valeur x dans la liste L, si un tel élément existe

L =101, 3, 5, 7, 3]

L.remove (3) Output :
print (L) [1, 5, 7, 3]
L.remove (3) [1, 5, 7]
print (L)

» Elle modifie donc la liste

> Testez : que se passe-t-il si on appelle remove() sur une liste
L avec comme argument une valeur x qui n'est pas présente
dans la liste ? Quelle est la différence avec L.pop(i) , ou i
n'existe pas?

Luc Testa ICS - Cours 4 19.03.2025 22 /44

Ete

e une liste, concaténer des listes

> Pour des listes L1 et L2, L1.extend(L2) ajoute tous les

éléments de L2 ala fin de L1 . Elle modifie donc L1 et
laisse L2 telle quelle.

L1 = [1, 3]

L2 = [2, 4] Output
L1.extend(L2) [, 3, 2, 4]
print(L1) [2, 4]
print(L2)

» Comme les strings, on peut concaténer deux listes avec
I'opérateur + . La concaténation de listes crée une nouvelle
liste concaténée et laisse L1 et L2 telles quelles.

L1 = [1, 3]

L2 = [2, 4] Output :
L=1L1 +1L2 01, 3, 2, 4]
print (L) [1, 31 [2, 4]

print(L1, L2)

Luc Testa ICS - Cours 4 19.03.2025

23 / 44

Concaténer des listes

» On peut aussi concaténer une liste avec elle-méme avec I'opérateur
* . Cette opération crée une nouvelle liste et laisse la liste originale

telle quelle.
L1 = [1, 3] Output :
L =L1T = 3
print (L) 1, 3,1, 3, 1, 3]
print(L1) 01, 31

» On peut réaffecter le résultat d'une opération de concaténation sur
une liste a la méme variable. L'objet list n’est pas modifé par
I'opération, mais la variable a été réaffectée.

L1 = [1, 3]

L2 = [2, 4]

L1 = L1 + L2 Output :
print("L1 =", L1) L1 =1[1, 3, 2, 4]
L3 = [1, 3] L3 =1[1, 3, 1, 3]
L3 = L3 = 2

print("L3 =", L3)

Luc Testa ICS - Cours 4 19.03.2025 24 / 44

Faire des calculs sur une liste

» max(L) et min(L) donnent le maximum et le minimum des
valeurs de L (s'il existe un ordre sur les valeurs de L !)

> L.count(x) retourne le nombre d'occurences de la valeur x
dans L

> L.index(x) retourne le premier indice de L ol x apparait si
un tel indice existe

» L.sort() trielaliste L (et donc modifie L)
» L.reverse() inverse I'ordre des éléments de L (et donc
modifie L)

» La fonction len(L) retourne la longueur (le nombre
d'éléments) de cette liste :

Luc Testa ICS - Cours 4 19.03.2025

Faire des calculs sur une liste : exemples

L =10[2, 6, 6, 4, 8, 10]

m, M = min(L), max(L)

print(f"{m = }, {M = 3}")

print(L.count (6))

print(L.index(3))

print(L.index(4))

L.sort()

print(f"La liste est modifiee
{L =1

L.reverse()

print(f"La liste est modifiee
{t =131

print (f"Longueur {len(L)}")

Output :
m=2,M=10
2
ValueError
list

3

La liste est modifiée :
L =102 4,6, 6,8, 10]

La liste est modifiée :
L =1[10, 8, 6, 6, 4, 2]

Longueur : 6

: 3 is not in

Luc Testa

ICS - Cours 4

19.03.2025

26 / 44

Appartenance

On peut vérifier I'appartenance d'un élément de valeur x a une
liste L avec le mot-clé in qui nous permet d'exprimer la
condition booléenne x in L.

» On peut similairement formuler la condition booléenne
x not in L.

L =101, 3, 5, 7]
print(2 in L)

print(3 in L) Output :
print(4 not in L) False
True
if 2 in L: True
print("?!#@$??") ouf
else:

print ("ouf")

Luc Testa ICS - Cours 4 19.03.2025 27 / 44

Compréhension de listes

On peut créer une liste de maniére concise en utilisant la
compréhension de listes. On utilise la syntaxe suivante :

[opérations for élément in itérable]

P Les deux programmes ci-dessous créent la méme liste
L =[o, 1, 2, 3, 4]

L =[]
for x in range(5): L = [x for x in range(5)]
L.append(x)

P Les deux programmes ci-dessous créent la méme liste
L = [o, 2, 4, 6, 8]

L =1]
for x in range(5): L = [2xx for x in range(5)]
L.append(2*x)

Luc Testa ICS - Cours 4 19.03.2025

Compréhension de listes

Dans les exemples précédents, on a construit une liste ou les
éléments successifs résultent d'une méme opération appliquée aux
élément successif d'un range.

» Au lieu d’un range, on peut parcourir n'importe quel itérable :
une autre liste...

1= 005, 25, 31,0 4, 5] Output :
L2 = [x**2 for x in L1] 1 4 9 16 25
print(L2) [, 4, 9, 16, 25

> ... un string ...
s = "salut” Output :
L = [c for c in s] st g 1wt
print (L) s, var, ;T

Luc Testa ICS - Cours 4 19.03.2025 29 / 44

Compréhension de listes

» On peut méme ajouter des conditions avec une instruction

if

L =101,3,5, 7, 9] Qs &

L1 = [x for x in L if x > 4]

print(L1) (5, 7, 9]
» Ou itérer sur plusieurs boucles :

L =[x +y for x in "ah” for y in "non"]

print (L)

Output :

[’an’, ,30’, yany' :hny, ’hO’, yhny]

Exercice : sauriez-vous construire une matrice en utilisant les
compréhensions de listes ?

Luc Testa ICS - Cours 4 19.03.2025 30 /44

Copier une liste

Pour une liste L1, 'instruction L2 = L1.copy() crée une
nouvelle liste contenant exactement les mémes valeurs que L1 et
affecte cette nouvelle liste 3 la variable L2 *.

L1 = [2, 4, 6, 8] Output: :
L2 = L1.copy() L1 et L2 contiennent les
print("L1 et L2 contiennent \ mémes valeurs:
les memes valeurs:") [2, 4, 6, 81 [2, 4, 6, 8]
print (L1, L2)
print (L1 == L2) True
print(”"L1 et L2 ne sont pas \ L1 et L2 ne sont pas le
le meme objet:") méme objet:
print (id(L1), id(L2)) 4382652544 4382350656
print (L1 is L2)

False

4. Note : cette opération est équivalente 3 L2 = L1[:] vue précédemment.
Luc Testa ICS - Cours 4 19.03.2025 31 /44

Copier une liste

Comme les listes L1 et L2 ne sont pas le méme objet, elles
évoluent de maniére indépendente.

L1 = [2, 4, 6] Output :

L2 = L1.copy() _
L1.append(8) L1 [2, 4, 6, 8],

: L2 = [2, 4, 6]
print(f"L1 = {L1}, L2 = {L2}")
L2[1] = 42 L1 =[2, 4, 6, 8],
print(f"L1 = {L1}, L2 = {L2}") L2 = [2, 42, 6]

Luc Testa ICS - Cours 4 19.03.2025 32 /44

Copier une liste

Que se passe-t-il en mémoire lorsqu’on exécute le code suivant?

L1 = [2, 4, 6] Output :
L2 = L1 2
L1.append(8) 4
for i in L2: 6
print (i) 8

TeT<] [2]=T<] [2]=TeT¢]
L1 L L2 L1 L2

L1 = [2, 4, 6] L2 = L1 L1.append(8)

Luc Testa ICS - Cours 4 19.03.2025 33 /44

Copier une liste

Contrairement aux str, aux int, aux float, les listes sont des objets
mutables, c-a-d qui peuvent &tre modifiés! Une opération sur une liste
ne créera pas de nouvel objet, mais modifiera sa valeur.

L1 = [2, 4, 6] Output :

L2 = L1 %)

L1.append(8) 4

for i in L2: 6
print (i) 8

» Les deux variables L1 et L2 faisant référence au méme objet,
toute modification de celui-ci sera répercutée sur |'ensemble des
variables y faisant référence !

Luc Testa ICS - Cours 4 19.03.2025 34 /44

Copier une liste

Que se passe-t-il en mémoire lorsqu’on exécute le code suivant ?

L1 = [2, 4, 6]

Output :
L2 = L1.copy()
L1.append(8) 2
for i in L2: 2

print (i)

> La méthode copy() créant un nouvel objet, tout
changement sur la variable d'origine ne sera pas répercuté sur
la nouvelle variable...

L1 = [2, 4, 6] L2 = L1.copy() L1.append(8)

Luc Testa ICS - Cours 4 19.03.2025 35 /44

Copies superficielles

En utilisant la syntaxe L2 = L1.copy() ou L2 = L1[:], Python
crée un nouvel objet référencé par L2 .

» Un comportement prévisible :

L1 = [C1, 31, [2, 4]1]

L2 = L1.copy() Output :

L1fel = [1, 3, 5] CC1, 3, 51, [2, 4]1]
print(L1) [C1, 31, [2, 411
print(L2)

» Un comportement bizarre?

L1 = [[1, 31, [2, 411

L2 = L1.copy() Output :
L1Le].append(5) [c1, 3, 51, [2, 411
print(L1) [c1, 3, 51, [2, 411
print(L2)

Luc Testa ICS - Cours 4 19.03.2025 36 /44

Copies superficielles : représentation de listes en mémoire

Pour comprendre ce que fait ce programme, il faut comprendre
comment les listes Python sont implémentées en mémoire.

Une liste Python® est stockée en mémoire comme un bloc contigu
de références aux éléments de la liste.

» Une référence est I'adresse en mémoire de I'élément auquel
elle se réfere.

» Chaque référence occupe un bloc de taille constante en
mémoire.

Ainsi, l'interpréteur Python peut allouer efficacement |'espace de
stockage d'une liste, méme si les éléments de la liste sont
arbitrairement grands (par exemple, dans le cas d'une liste de
listes).

5. Dans CPython, I'implémentation par défaut et la plus courante de Python
Luc Testa ICS - Cours 4 19.03.2025 37 /44

Copies superficielles : exemples

L1 [tr, 31, [2, 411
L2 L1.copy()
L1fel = [1, 3, 5]

1. L1 = [[1, 31, [2, 411
— L1 contient deux références vers les listes [1, 3] et
[2, 4] stockées en mémoire.

[1, 3]

[2, 4]
\/
\ /

Note : Dans ces deux exemples, vous pouvez aussi afficher les id
des éléments de L1 et L2 a chaque étape pour comprendre ce qui

se passe.
Luc Testa ICS - Cours 4 19.03.2025 38 /44

L1

Copies superficielles : exemples

L1 [tr, 31, [2, 411
L2 = L1.copy()
L1[e] = [1, 3, 5]

2. L2 = L1.copy()

— L2 est une copie des références vers lesquelles pointent les
éléments de la liste L1 . Les éléments de L1 et L2 pointent
ainsi vers les mémes objets.

[1, 3]

\ [2, 4]

T IR

L2

Luc Testa ICS - Cours 4 19.03.2025 39 /44

Copies superficielles : le premier exemple

L1 Ccr, 31, [2, 411
L2 = L1.copy()
L1[e]l = [1, 3, 5]

3.1 L1[e] = [1, 3, 5]
— Le 0°™€ élément de L1 est remplacé par une nouvelle

référence vers la liste [1, 3, 5] qui est créée ailleurs dans la
mémoire.

— Le 0°™° élément de L2 reste inchangé.

[1, 3]
[2, 4]

TSI

[1, 3, 5]

Luc Testa ICS - Cours 4 19.03.2025

40 / 44

Copies superficielles : le second exemple

L1 = [[1, 31, [2, 4]1]
L2 = L1.copy()
L1[@].append(5)

3.2 L1[@].append(5)
— La liste [1,3] a laquelle le 0° élément de la liste L1 fait

référence est modifiée. Comme L2[0] fait référence au
méme objet, son affichage affichera la méme valeur.

[1, 3, 5]

\ [2, 4]

T IR

L2

Luc Testa ICS - Cours 4 19.03.2025 41 / 44

Copies superficielles : moralité

1. Les listes ne contiennent pas des objets, mais des
références a des objets existant en mémoire.

2. Les listes sont des objets mutables (c'est-a-dire des
objets qu’'on peut modifier apres les avoir créés).

3. Lorsqu'on exécute L2 = L1.copy() ou L2 = L1[:] on
crée en réalité une copie superficielle de la liste L1.
C'est-a-dire qu'on ne copie que les références vers les
objets originaux.

Remarque : Pour faire une ‘“vraie” copie, ou copie profonde d'une liste de
listes (qui va copier chacune des sous-listes au lieu de pointer vers les mémes

sous-listes) on utilise la fonction deepcopy() du module copy.

Luc Testa ICS - Cours 4 19.03.2025 42 / 44

Copies superficielles : moralité

L1 = [[1, 31, [2, 4]1] L1 = [[1, 31, [2, 4]1]
L2 = L1.copy() L2 = L1.copy()
L1fe]l = [1, 3, 5] L1[@].append(5)

» Donc le comportement " bizarre” dans le second exemple est
di au fait que L1 et L2 satisfont la propriété (1) et que leurs
éléments, étant aussi des listes, satisfont la propriété (2).

» La mutabilité est une propriété en Python qui offre une
certaine puissance de programmation mais qui rend les
programmes plus vulnérables a des erreurs.

Luc Testa ICS - Cours 4 19.03.2025 43 / 44

Take Home Message

Une liste est une structure de données hétérogene :
» qui est mutable
» qui est itérable

» qu'on peut constuire a I'aide d'une compréhension de
liste.

S'agissant d'un objet mutable formé de références vers des
objets existants, il faut faire tout particulierement attention
lors de la manipulation de ces objets.

Luc Testa ICS - Cours 4 19.03.2025 44 / 44

